Invariant neutral subspaces for Hamiltonian matrices
نویسندگان
چکیده
Hamiltonian matrices with respect to a nondegenerate skewsymmetric or skewhermitian indefinite inner product in finite dimensional real, complex, or quaternion vector spaces are studied. Subspaces that are simultaneously invariant for the matrices and neutral in the indefinite inner product are of special interest. The dimension of maximal (by inclusion) such subspaces is identified in terms of the canonical forms and sign characteristics. Criteria for uniqueness of maximal invariant neutral subspaces are given. The important special case of invariant Lagrangian subspaces is treated separately. Comparisons are made between real, complex, and quaternion contexts; for example, for complex Hamiltonian matrices with respect to a nondegenerate skewhermitian inner product in a finite dimensional complex vector space, the (complex) dimension of (complex) maximal invariant neutral subspaces is compared to the (quaternion) dimension of (quaternion) maximal invariant neutral subspaces, and necessary and sufficient conditions are given for the two dimensions to coincide (this is not always the case).
منابع مشابه
Ela Invariant Neutral Subspaces for Hamiltonian Matrices
Hamiltonian matrices with respect to a nondegenerate skewsymmetric or skewhermitian indefinite inner product in finite dimensional real, complex, or quaternion vector spaces are studied. Subspaces that are simultaneously invariant for the matrices and neutral in the indefinite inner product are of special interest. The dimension of maximal (by inclusion) such subspaces is identified in terms of...
متن کاملStructured Condition Numbers for Invariant Subspaces
Invariant subspaces of structured matrices are sometimes better conditioned with respect to structured perturbations than with respect to general perturbations. Sometimes they are not. This paper proposes an appropriate condition number cS, for invariant subspaces subject to structured perturbations. Several examples compare cS with the unstructured condition number. The examples include block ...
متن کاملPerturbation Bounds for Isotropic Invariant Subspaces of Skew-Hamiltonian Matrices
Abstract. We investigate the behavior of isotropic invariant subspaces of skew-Hamiltonian matrices under structured perturbations. It is shown that finding a nearby subspace is equivalent to solving a certain quadratic matrix equation. This connection is used to derive meaningful error bounds and condition numbers that can be used to judge the quality of invariant subspaces computed by strongl...
متن کاملNumerische Simulation Auf Massiv Parallelen Rechnern Preprint-reihe Des Chemnitzer Sfb 393 Lagrangian Invariant Subspaces of Hamiltonian Matrices
The existence and uniqueness of Lagrangian invariant subspaces of Hamiltonian matrices is studied. Necessary and suucient conditions are given in terms of the Jor-dan structure and certain sign characteristics that give uniqueness of these subspaces even in the presence of purely imaginary eigenvalues. These results are applied to obtain in special cases existence and uniqueness results for Her...
متن کاملExistence, Uniqueness, and Parametrization of Lagrangian Invariant Subspaces
The existence, uniqueness, and parametrization of Lagrangian invariant subspaces for Hamiltonian matrices is studied. Necessary and sufficient conditions and a complete parametrization are given. Some necessary and sufficient conditions for the existence of Hermitian solutions of algebraic Riccati equations follow as simple corollaries.
متن کامل